

This is an accepted manuscript of a paper intended for publication in a
journal. This document was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, or any of their employees, makes any
warranty, expressed or implied, or assumes any legal liability or
responsibility for any third party’s use, or the results of such use, of any
information, apparatus, product or process disclosed in this report, or
represents that its use by such third party would not infringe privately owned
rights. The views expressed in this paper are not necessarily those of the
United States Government or the sponsoring agency.

Prepared for the U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

INL/JOU-17-41181
Accepted Manuscript

Rapid Multiphase-Field
Model Development
Using a Modular Free
Energy Based Approach
with Automatic
Differentiation in
MOOSE/MARMOT

D. Schwen, L.K. Aagesen, J.W. Peterson
(Idaho National Laboratory)
M.R. Tonks
(Penn State University)

February 2017

Rapid multiphase-field model development using a modular free energy based
approach with automatic differentiation in MOOSE/MARMOT

D. Schwena,∗, L. K. Aagesena, J. W. Petersonc, M. R. Tonksa,b

aFuels Modeling and Simulation Department, Idaho National Laboratory, Idaho Falls, ID 83415, United States
bMechanical and Nuclear Engineering Department, Pennsylvania State University, University Park, PA 16802, USA

cModeling and Simulation Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA

Abstract

We present a novel phase-field model development capability in the open source MOOSE finite element framework.
This facility is based on the “modular free energy” approach in which the phase-field equations are implemented in a
general form that is logically separated from model-specific data such as the thermodynamic free energy density and
mobility functions. Free energy terms contributing to a phase-field model are abstracted into self-contained objects
that can be dynamically combined at simulation run time. Combining multiple chemical and mechanical free energy
contributions expedites the construction of coupled phase-field, mechanics, and multiphase models. This approach allows
computational material scientists to focus on implementing new material models, and to reuse existing solution algorithms
and data processing routines. A key new aspect of the rapid phase-field development approach that we discuss in detail
is the automatic symbolic differentiation capability. Automatic symbolic differentiation is used to compute derivatives of
the free energy density functionals, and removes potential sources of human error while guaranteeing that the nonlinear
system Jacobians are accurately approximated. Through just-in-time compilation, we greatly reduce the computational
expense of evaluating the differentiated expressions. The new capability is demonstrated for a variety of representative
applications.

Keywords: phase-field, finite element, automatic differentiation
PACS: , 46.15.-x, 05.10.-a, 02.70.Dh
2010 MSC: 65-04, 65Z05

1. Introduction

The phase-field method is a well-established tool for
simulating the coevolution of microstructure and physi-
cal properties at the mesoscale [1, 2]. In the phase-field
method, the microstructure is described by a system of
continuous variables, also called order parameters. Mi-
crostructure interfaces are approximated using a finite width,
and the order parameters vary smoothly over the inter-
faces. In isolated systems, the evolution of these variables
leads to a monotonically decreasing free energy as a func-
tion of time. The phase-field method has been used to
model a large range of physical phenomena, including so-
lidification [3, 4], phase transformation [5, 6], and grain
growth [7, 8].

The microstructure evolution is governed by partial dif-
ferential equations (PDEs) that depend on the derivatives
of a functional defining the free energy of the system in
terms of the phase-field variables. The phase-field PDEs
have been solved using the finite difference [9], finite vol-
ume [10], and finite element (FEM) methods [11, 12], as

∗Corresponding author
Email address: daniel.schwen@inl.gov (D. Schwen)

well as spectral methods based on the fast Fourier trans-
form [13]. The finite difference method is the easiest to
implement, while the spectral methods are computation-
ally efficient for small systems and offer better convergence
properties. The finite volume and finite element methods
are the most flexible, allowing a large range of boundary
conditions, domain shapes, and coupling to other physics.

No matter which method is used to solve the phase-
field equations, their basic form remains the same for most
models: only the free energy functional and the mobility
expressions change when modeling different materials and
physical phenomena. In this work, we continue the efforts
described in [12] where a free energy based approach to
phase-field model development is employed. This strategy
takes advantage of the “fixed” form of the governing phase-
field equations, and restricts the task of programming new
phase-field models to the task of programming new free en-
ergy functionals. To the authors’ knowledge, this specific
approach is not currently followed by other open source
phase-field software development efforts [14, 15, 10, 16],
however it is also a fairly natural one that could be imple-
mented retroactively in existing code bases.

The free energy based approach employs three capa-
bilities which simplify and accelerate the development of

Preprint submitted to Computational Materials Science February 21, 2017

new multiphase-field models: (i) a symbolic differentia-
tion module which eliminates the need to compute deriva-
tives (up to third-order) of the free energy, (ii) a system to
modularize, recombine, and reuse the various free energy
contributions across models, and (iii) a generic framework
for multiphase-field simulations in which new free energy
modules can be employed. The sum of these components
represents an important step toward a modular and gen-
eral phase-field approach.

2. Phase-Field method summary

In the phase-field method, the evolution of non-conserved
order parameters ηj (e.g. phase regions and grains) is gov-
erned by the Allen–Cahn [17] equation (1) and the evolu-
tion of conserved order parameters ci (e.g. concentrations)
is governed by the Cahn–Hilliard [18] equation (2):

∂ηj
∂t

= −Lj
δF

δηj
, j = 1, . . . , Nη (1)

∂ci
∂t

= ∇ ·
(
Mi∇

δF

δci

)
, i = 1, . . . , Nc (2)

Here, F is the total free energy of the system, which can
be formulated as a volume integral

F =

∫
Ω

(floc + fgr + Ed) dV, (3)

where Ω is the simulation domain,

floc ≡ floc(η1, η2, . . . , c1, c2, . . .) (4)

is the local free energy density, and

fgr ≡ fgr(∇η1,∇η2, . . . ,∇c1,∇c2, . . .) (5)

is the gradient energy contribution. Ed is the free energy
contribution due to external driving forces. In general, the
total free energy depends on all of the conserved and non-
conserved order parameters and their gradients. Comput-
ing the variational derivatives in (1) and (2) yields terms
which depend on the derivatives of the local free energy
density, floc, with respect to all order parameters, i.e.

∂ηj
∂t

= −Lj
(
∂floc

∂ηj
−∇ · ∂fgr

∂∇ηj
+
∂Ed
∂ηj

)
(6)

∂ci
∂t

= ∇ ·Mi∇
(
∂floc

∂ci
−∇ · ∂fgr

∂∇ci
+
∂Ed
∂ci

)
. (7)

Note that the thermodynamics of the modeled system are
determined by the local free energy density floc, while the
gradient contribution fgr produces diffuse-width interfaces
and contributes only to the interfacial energy. The gradi-
ent contribution is often a known functional that exposes
only scalar parameters for tuning the interfacial width, as
discussed in [2]. floc is therefore the primary input needed
to formulate a new phase-field material model.

In this work, we solve the resulting PDEs using FEM
and implicit time integration with the open source Multi-
physics Object-Oriented Simulation Environment (MOOSE)
[19, 12]. MOOSE is a finite-element framework primarily
developed at Idaho National Laboratory (INL) which in-
cludes several physics modules that assist users in devel-
oping phase-field, thermal transport, solid mechanics, and
chemistry models. All the techniques and applications dis-
cussed in this work are currently available in the MOOSE
phase field module. MOOSE solves systems of PDEs in
a tightly-coupled manner by forming a single residual vec-
tor comprising all the unknowns. To form the residual vec-
tor, the equations have to be transformed into their weak
form via multiplication by a suitably defined test func-
tion and integration over Ω. We subsequently utilize the
Gauss divergence theorem to reduce the order of the spa-
tial derivatives in the resulting residual equations (see [12]
for more detail on the development of the weak form).

Due to the use of implicit time integration, the system
of phase-field equations requires a nonlinear solve at each
time step. To solve this system of nonlinear equations,
MOOSE typically employs the preconditioned Jacobian-
free Newton Krylov [20, 21] method (PJFNK), via in-
terfaces provided by the libMesh [22] and PETSc [23] li-
braries. To improve the convergence properties of the non-
linear solve, the preconditioning matrix should be as close
as possible to the actual Jacobian of the nonlinear system
of equations. Computing the Jacobian matrix entries re-
quires derivatives of the residual vector entries with respect
to each of the non-linear variables in the system. This in-
cludes, for instance, cross-derivatives of the free energy
density functional with respect to all phase-field variables
used in the model.

The Cahn–Hilliard Eq. (7) involves a fourth-order spa-
tial derivative on the concentration variable. There are
two standard formulations which are commonly used to
solve (7), see, for instance, the discussion in [24]. The first
is to directly solve the time-dependent fourth-order PDE
(using a C1-continuous finite element discretization) and
the second is to split the equation into two second-order
PDEs which can be solved with more traditional C0 finite
elements. The split solve of the Cahn–Hilliard equation
depends on ∂floc/∂ci, while the the direct solve involves

∇∂floc

∂ci
=
∑
j

∂2floc

∂ci∂cj
∇cj +

∑
k

∂2floc

∂ci∂ηk
∇ηk. (8)

If there are N phase-field variables, computing the Ja-
cobian requires N additional second derivatives for the
Allen–Cahn equation/split solve of the Cahn–Hilliard equa-
tion, and N2 third derivatives for the direct solve of the
Cahn–Hilliard equation. The MOOSE phase field mod-
ule contains FEM discretizations for both the split and
non-split Cahn–Hilliard formulations, since there are ad-
vantages and disadvantages to using both [24].

2

3. Free energy based approach

The development of numerical simulation tools for solv-
ing phase-field mathematical models can be simplified by
employing an approach based on the free energy func-
tional. In such an approach, the Cahn–Hilliard equa-
tion (both the non-split and split forms) and the Allen–
Cahn equation obtain all the required free energy den-
sity derivatives from free energy objects (in the sense of
object-oriented programming) which are specialized to the
application in question. When a new phase-field model
is developed, the existing implementations of the residual
equations are re-used—only the code required to define the
specialized free energy object itself must be written.

In the MOOSE phase field module, Cahn–Hilliard
and Allen–Cahn residuals and Jacobians have been im-
plemented using small program units called “Kernels”. A
Kernel is a C++ class representing a term in the weak form
of a PDE. The computation of the free energy density and
its derivatives is performed in MOOSE by “Material” ob-
jects. A Material computes values, which may depend on
non-linear variables, at specified points in the simulation
domain. All simulation-specific physics are implemented
through Material objects which calculate the free energy
density. The free energy density derivatives are then used
in a generic way by the Kernel objects.

4. Automatic differentiation of free energies

While the free energy based approach to phase-field
model implementation simplifies the overall process, man-
ually programming the free energy derivatives can be both
burdensome and a potential source of error. Therefore, au-
tomatic differentiation is used to simplify the process even
further, requiring the user to implement only the free en-
ergy density expression itself. All required derivatives are
computed analytically in a fully-automated way.

To facilitate automatic differentiation, and to allow
user-defined functions to be supplied via input files, MOOSE
employs the Function Parser library [25] that is included
as a third-party plugin in the underlying libMesh finite ele-
ment library. The Function Parser library accepts a math-
ematical function definition given as a plain text string.
The expression string is lexically parsed into an interme-
diate tree representation and then transformed into stack
machine bytecode. This bytecode can then be executed by
the Function Parser bytecode interpreter module as often
as necessary without further transformation. This inter-
mediate tree representation of the Function Parser expres-
sions, illustrated in Fig. 1, readily lends itself to algorith-
mic transformations such as automatic differentiation.

The automatic differentiation system, which is a major
new contribution in this work, operates on the tree repre-
sentation of the free energy function. In this tree structure,
leaf nodes can correspond to constants or variables, and
internal nodes correspond to mathematical operators and
functions, the arguments of which are contained in child

Figure 1: Schematic example of the tree representing the mathe-
matical expression x2(y + 5). The nodes N1 and N3 represent the
multiplication and sum operators, respectively, with two arguments
each, the internal node N2 represents a square function with one ar-
gument, and the leaf nodes N4–N6 represent the variables x, y, and
the constant 5, respectively.

nodes or subtrees. The derivatives of the leaf nodes are 0
for all nodes that do not represent the variable the deriva-
tive is taken with respect to, and 1 for all the nodes that do.
The derivatives of the internal nodes are constructed re-
cursively according to a set of elementary derivative rules.

Construction of the derivative starts at the root node
of the expression tree. For the example expression tree
in Fig. 1, which represents the expression x2(y + 5), the
root node holds the multiplication N1 = N2 ∗ N3. To
obtain the derivative with respect to x, we need to cal-
culate the derivative of the root node, dxN1. We set
dxN1 = dxN2 ∗ N3 + N2 ∗ dxN3 according to the prod-
uct rule. This expression contains derivatives of the nodes
N2 and N3. These derivatives are recursively constructed
until leaf nodes with a zero derivative value are reached.
This happens in all cases except dxN4, which evaluates to
one. The full derivative expression that is constructed in
this manner is (2x ∗ 1) ∗ (y + 5) + x2(0 + 0).

Our method is a member of the class of source transfor-
mation or symbolic differentiation algorithms [26, 27]. In
contrast to the commonly used forward and backward ac-
cumulation automatic differentiation algorithms, the deriva-
tive evaluation is not tied to the evaluation of the undif-
ferentiated function. Each derivative is algebraically opti-
mized, compiled, and evaluated exactly when needed. In
a finite element code, the weak form residual evaluation
(which, in a split form Cahn–Hilliard problem, contains
the first derivative of the free energy only) is the most
common operation by far, occurring at every linear itera-
tion. The Jacobian, containing the second derivatives, is
only evaluated once per non-linear iteration. The undiffer-
entiated form is not evaluated for the purpose of solving
the phase-field equations, but only when needed for out-
put or postprocessing stages, which is generally once per
time step. MOOSE furthermore detects which derivatives
are needed by the residual and Jacobian evaluations and
skips evaluation of unused derivatives, which reduces the
computational burden when constructing approximate Ja-

3

a) interpreted

b) optimized

c) compiled

d) compiled + opt.

e) compiled + opt. II

f) manual derivatives

g) hand optimized

0

1

2

3

4

5

S
im

u
la

ti
o
n
 t

im
e

(r
el

at
iv

e)

handcodedsymbolic automatic differentiation

Figure 2: Relative computation times for an iron chromium phase-
field simulation. Hand coded free energy derivatives are compared
to derivaties computed via the automatic symbolic differentiation
system. Results a) and b) use the standard Function Parser bytecode
interpreter, results c), d) and e) use the just-in-time compilation
(JIT) module developed in this work. Results b), d), and e) also use
the algebraic optimization provided by FParser. Blue (light gray)
bars are obtained using the clang compiler, red (dark gray) results
are obtained with GCC.

cobian matrices for preconditioning purposes.
The Function Parser library provides a comprehensive

algebraic optimizer that groups, reorders, and transforms
the function expression into an equivalent but faster-to-
evaluate form. The algebraic simplifications are essential
for removing the trivial leaf node derivatives which may
lead to evaluation errors, such as division by zero, and can
be avoided by simple term cancellations. In the above ex-
ample, the simplifications reduce the derivative expression
to 2x(y + 5).

To further improve the performance of the parsed and
runtime interpreted functions, we have also developed a
just-in-time (JIT) compilation module. At runtime, the
generated bytecode sequences are automatically transformed
into small C source code files. A compiler is dispatched to
compile each function file into a dynamically linkable li-
brary, which is then loaded “on the fly” with a dlopen [28]
POSIX system call. This occurs once during simulation
initialization. If the JIT compilation fails, the function
evaluation falls back on the bytecode interpreter, other-
wise the generated machine code is called. The average
time overhead of the additional compilation step is on the
order of 0.1 s per function expression or less, depending on
the system the simulation is executed on. This is further
mitigated by a caching system. A unique SHA1 hash [29]
is computed from the function bytecode, and the com-
piled functions are stored permanently using the hash as
a filename. Recompilation will only occur if the bytecode,
and thus the function expression, changes. Trivial func-
tion changes, namely the modification of constants, will in
most cases not trigger a recompilation.

In Fig. 2, the run times for an iron chromium phase-
field simulation (described in detail below) are compared
for different implementations of the free energy. Results

-3 -2 -1 0 1 2 3 4 5

Position

0

0.2

0.4

0.6

0.8

1

C
o
n
c
e
n
tr

a
ti

o
n

10 100 1000 10000

Mesh Points

10
-6

10
-5

10
-4

10
-3

10
-2

L
2
 E

rr
o
r

Figure 3: Comparison of the numerical solution (red circles) of the
Cahn–Hilliard equation in the split form on linear Lagrange elements
and the analytical solution (solid line) for an equilibrium interface
in a one dimensional domain. The inset shows that the L2 norm of
the error in the numerical solution converges at O(h2), where h is a
measure of the grid size.

(a) through (e) are obtained using our symbolic differenti-
ation system, while results (f) and (g) are obtained using
hand coded derivatives. The outputs generated by those
runs have been confirmed to be identical within the lim-
its of the convergence tolerance. The blue (light gray)
bars were obtained using the LLVM-based Clang com-
piler [30, 31] (version 3.9.0), and the red (dark gray) results
were obtained using the GNU Compiler Collection [32]
(GCC) C++ compiler (version 6.2.0). Results (a) and (b)
employ the standard Function Parser bytecode compiler.
Result (b) shows the effect of applying the built-in alge-
braic optimization to the function byte code. Results (c),
(d) and (e) use the JIT compilation module developed for
this work. JIT compilation turns out to be the crucial
step needed to ensure performance on par with hand-coded
derivatives as shown in result (g).

The JIT module has been incorporated into the Func-
tion Parser library fork in libMesh. Through this auto-
matic symbolic differentiation system, we achieve a signif-
icant reduction in developer time and remove a source of
developer error that is difficult to track down and debug.
We note that a naive implementation of the free energy ob-
tained via manual differentiation can exhibit significantly
worse performance. One factor is the use of the C++ li-
brary function std::pow, which for integer powers is sig-
nificantly slower than repeated multiplication operators.
The Function Parser library performs this optimization
automatically.

To demonstrate the correctness of the implementation,
we compare the numerical solution of a Cahn–Hilliard equa-
tion for a simple double well free energy given by f =
c2(1 − c)2 (interface parameter equal to 1) to the analyt-

ical solution, c = 1
2

(
1 + tanh

(
x√
2

))
for the equilibrium

interface in a one dimensional domain. Fig. 3 shows good
agreement of the interface profiles obtained numerically

4

(red circles) and the analytical solution (solid line). The
inset shows the expected quadratic convergence with re-
spect to the mesh resolution for linear Lagrange elements.
The split formulation of the Cahn–Hilliard equation was
used along with automatic differentiation of the free en-
ergy. To the authors’ best knowledge this integrated ap-
proach of utilizing run time symbolic differentiation and
JIT compiling of free energies in a phase-field framework
is unique.

4.1. Smoothly-extrapolated logarithm

Free energies that contain a term for the configura-
tional entropy derived from ideal or regular [33] solution
models will contain terms of the form

c ln c+ (1− c) ln(1− c),

where c is a conserved order parameter. As the natu-
ral logarithm is only defined for strictly positive numbers,
this expression restricts the domain of the free energy to
numbers on the open interval (0, 1). This poses numeri-
cal challenges for systems with equilibrium concentrations
near 0 or 1.

To improve the convergence behavior, we have devel-
oped a smoothly-extrapolated logarithm surrogate func-
tion. For input arguments c < ε, we compute a Taylor-
series expansion of the logarithm function centered around
c = ε instead. For c > ε, we evaluate the standard log-
arithm function. This surrogate logarithm function also
extends to negative arguments, and is twice differentiable
everywhere. In the resulting free energy expressions, the
extension to negative arguments manifests as a free en-
ergy penalty which drives the solution back to physically-
allowable concentrations without incurring numerical er-
rors. In previous work [34] piecewise constructions using
Taylor expansions of the full free energy expressions out-
side its domain have been suggested. This requires knowl-
edge of the domain of the free energy to set the interval
boundaries over which the Taylor expansion is active. Our
approach retains a single free energy expression with the
Taylor expansion only occurring at the level of the log-
arithm functions, which are the underlying cause of the
limitation of the domain of the free energy. The domain
of the log function is well defined and thus our model re-
quires fewer user inputs.

Care has to be taken to choose ε small enough to
not adversely impact the thermodynamic properties of the
simulated system. In particular, large values of ε can
change the phase diagram by moving the common tangent
points to larger concentrations.

As an example, we used the techniques presented above
to implement a phase-field model based on the published [35]
free energy surface of an iron chromium binary alloy. We
have encoded the full free energy expression from the pub-
lication into a MOOSE input file as a parsed function Ma-
terial with automatic differentiation and Taylor expansion
substitution for small logarithm arguments. A running

Figure 4: Snapshot of a phase-field simulation of spinodal de-
composition and formation of chromium rich precipitates in an iron
chromium alloy obtained using a runtime parsed and automatically
differentiated free energy expression. The line scan plotted in the
inset shows the precipitate and matrix concentrations.

phase-field model was obtained with little additional ef-
fort. Fig. 4 shows a simulation snapshot obtained using
this free energy. The system is in the particle coarsening
stage, having previously undergone spinodal decomposi-
tion. A line scan performed on the center precipitate is
shown in the inset. In agreement with the published free
energy surface and resulting phase diagram, we observe
practically no solubility of iron in the chromium precip-
itates, while the chromium solubility in the iron matrix
is approximately 6.7% at the simulation temperature of
500 K.

In addition to the free energy, the user has to provide a
mobility model, which for this example we assumed to be
concentration independent. We used experimental data
on chromium tracer diffusivity in iron as a guide to set
the actual value of the mobility M = 10−3 nm (eV s)

−1
.

For the chosen simulation length scale of 20 nm × 20nm
and mesh of 3600 quadrilateral elements, an appropriate
interfacial energy parameter κ = 0.3 eV nm−1 was chosen.
The initial choice of κ is somewhat arbitrary, as its order
of magnitude rarely changes at a given length scale, and
common excess free energies are of similar magnitude for
many alloy systems. Further refinement of the κ value to
obtain a specific surface energy may require a few simu-
lation trial runs, which on one-dimensional test systems
take only seconds. The example simulation was run with
an adaptive time stepper to a simulation time of about 24
h. All input files required to rerun the simulations in this
paper are available from the MOOSE GitHub repository1.

5. Multiphase phase-field models

The tools presented above allow the rapid implementa-
tion of single phase material systems, however, many ma-

1https://github.com/idaholab/moose/tree/devel/modules/

combined/examples/publications/rapid_dev

5

https://github.com/idaholab/moose/tree/devel/modules/combined/examples/publications/rapid_dev
https://github.com/idaholab/moose/tree/devel/modules/combined/examples/publications/rapid_dev

terial systems of interest exhibit complex phase diagrams
with multiple phases potentially coexisting in a simulation
volume. These phases have separate free energies and can
potentially have different mechanical and thermal prop-
erties. To model systems with multiple coexisting phases,
the construction of a global free energy functional spanning
the entire phase space of the system is necessary. We now
show that the material-based modular free energy system
presented here lends itself to the convenient construction
of such multiphase free energies. The free energy of each
individual phase can be provided using a Material object
that encapsulates all required free energy derivatives and
leverages the capabilities of the symbolic differentiation
module. The global free energy is then constructed as a
combination of the phase free energies using non-conserved
order parameters to indicate the phase distribution. Just
as the free energy values are combined, the derivatives for
the phase free energies are used to construct the deriva-
tives of the global free energy. The MOOSE phase-field
module has a selection of pre-made Material objects for
global free energy construction which users can provide
single phase free energies for.

One common approach is to use a linear combination
of the free energy densities f jloc of each phase in the system
based on the WBM model [5], e.g.

floc =
∑
j

h(ηj)f
j
loc(c1, c2, . . .) +Wg(η1, η2, . . .). (9)

The switching function h(ηj) varies smoothly from 0 to 1 as
ηj goes from 0 to 1. The barrier function g (multiplied by
the barrier height W) penalizes phase mixtures over pure
phase regions. The total weight of all phase free energy
contributions at each point in the simulation volume is
exactly unity, which can be expressed as the constraint

k(η1, η2, . . .) ≡
∑
j

h(ηj)− 1 = 0. (10)

Two phase systems can be modeled using a single order
parameter η1 with the explicit constraint η2 = 1−η1. The
symmetric switching function h(η) = 1−h(1−η) then sat-
isfies the constraint (10). For n-phase systems with n > 2,
it is advantageous to use n order parameters. In this case,
the constraint k is not automatically satisfied and needs
to be enforced by other means. In the MOOSE phase-field
module we provide two methods of enforcing the switch-
ing function constraint: a “hard” constraint utilizing the
Lagrange multiplier technique, and a “soft” constraint im-
plemented via a free energy penalty term.

The soft constraint is implemented by adding the con-
tribution,

fp = χ

1−
∑
j

h(ηj)

2

, (11)

to the free energy, where χ is a user-tunable penalty co-
efficient. In contrast, the hard constraint is imposed by

introducing a Lagrange multiplier λ as a field variable.
The variational statement of the problem is then: find
(η1, η2, . . . , λ) such that the boundary conditions are sat-
isfied, and

aj(η1, η2, . . . , v) +

∫
Ω

λ
∂k

∂ηj
v dx = 0 (12)∫

Ω

q
∂(λk)

∂λ
dx = 0 (13)

hold for all admissible test functions (v, q), where aj(η1, η2, . . . , v)
is the weak form (Allen–Cahn) residual for the jth non-
conserved order parameter. We note that these equations
alter the character of the Jacobian matrix of the non-linear
problem by introducing a zero block on the diagonal. This
can complicate the task of preconditioning and iteratively
solving the system substantially. By replacing the con-
straint k with the modified constraint

k̄(η1, η2, . . . , λ) ≡ k(η1, η2, . . .)−
ε

2
λ, (14)

the ε
2λ term introduces an O(ε) λ-dependence in the con-

straint. This results in a non-zero on-diagonal Jacobian
contribution of −ε for Eq. (13), avoiding “zero pivot” er-
rors arising from PETSc preconditioners (such as -pc type

lu, which implements only partial pivoting). The value of
ε should be chosen slightly larger than the linear solver
tolerance, and results in a trade off between accuracy and
solver performance. This approach does result in a viola-
tion of the constraint of O(ε), however it was found that
this discrepancy did not adversely affect the overall quality
of the solution, and improved the convergence character-
istics of the solver.

5.1. KKS models

An additional multiphase model implemented in the
phase field module is the Kim-Kim-Suzuki (KKS) model [6].
KKS addresses the issue of systems with large phase free
energy differences in the interfacial regions. One relevant
example is the xenon gas bubble problem shown in Fig. 5,
computed using the phase free energies from Li et al. [36].
Here the gas solubility in the solid UO2 matrix is very
low, with large free energy penalties for large gas concen-
trations. In the bubble phase, the equilibrium gas con-
centration is near unity. In the bubble/matrix interfacial
region, both the order parameter and the concentration
change from the bubble equilibrium values to the matrix
equilibrium values over a finite distance due to the soft
interface approximation. In that interfacial region, the
free energy of both phases is computed for the intermedi-
ate concentration range, which results in large free energy
densities from the solid phase contribution. This increases
the interfacial free energy of the bubbles to a nonphysical
value.

The KKS model solves this problem by introducing the
concept of phase concentrations, which are effectively the
fractions of the total concentration held in a given phase.

6

Figure 5: Example of bubble formation modeled with the KKS UO2

fission gas model, where the vacancy concentration is shown on the
left and the Xe concentration is shown on the right. The domain is
10 nm on each side with periodic boundary conditions applied.

In this model, the gas concentration is largely shifted to
the gas phase to avoid the free energy penalty. In the
KKS model, the interfacial free energy is decoupled from
the diffuse interface width, allowing the use of wider inter-
faces and therefore coarser spatial discretizations requiring
fewer computational resources. However, solving for these
new variables requires additional differential equations. In
the KKS model, these are given by requiring mass conser-
vation and equality of the component chemical potentials
across all phases:

F = (1− h(η))Fa(ca) + h(η)Fb(cb) +Wg(η), (15)

c = (1− h(η)) ca + h(η)cb, (16)

∂fa
∂ca

=
∂fb
∂cb

. (17)

The MOOSE phase-field module currently implements
a two-phase version of the KKS model that uses Kernels
for the phase-field equations as well as the KKS constraint
equations. The free energy is supplied to those Kernels
using the derivative Material system outlined above in the
same manner as for the other multiphase approaches dis-
cussed above.

In addition to the two-phase KKS model, a three-phase
model based on [37] has been implemented in the MOOSE
phase-field module. One limitation of many multiphase-
field models is that a binary interface between two phases
is unstable with respect to the spurious formation of addi-
tional phases in the diffuse interfacial region [38, 39]. The
formation of the spurious third phase occurs when the free
energy is not convex with respect to that third phase. Its
formation distorts the interfacial energy of the binary in-
terface, and can lead to nucleation of the third phase in
unphysical locations. This can be mitigated by requiring
the switching functions to have the additional property
of having zero slope and positive curvature perpendicular
to the transformation path between two phases. Func-
tions with that property are called tilting functions. In
the three-phase model implemented in MOOSE, the tilt-
ing functions developed in [38] and applied to the KKS
approach in [37] are used to prevent spurious third-phase
formation at a two-phase interface.

In this model, the three phases are represented by order
parameters η1, η2, and η3. They are constrained such that

η1 + η2 + η3 = 1 (18)

The free energy of the system is given by

F =

∫
Ω

(floc + fgr) dV (19)

The local energy floc is given by

floc =
3∑
i=1

[
hifi(ci) +Wη2

i (1− ηi)2
]

(20)

where fi is the free energy density of each phase, ci is the
phase concentration, W is the potential barrier height, and
the hi are the tilting functions [38, 37]

hi ≡ hi(ηi, ηj , ηk)

=
η2
i

4

(
15(1− ηi)[1 + ηi − (ηk − ηj)2] + ηi(9η

2
i − 5)

)
(21)

for i = 1, 2, 3, and where

j ≡ 1 + mod(i, 3) (22)

k ≡ 1 + mod(i+ 1, 3) (23)

i.e. (i, j, k) form a cyclic permutation. The gradient energy
fgr is given by

fgr =
∑
i

κ

2
|∇ηi|2 (24)

The concentration c is defined as a function of the phase
concentrations as

c =
3∑
j=1

hjcj (25)

Because the tilting function hi reduces to the commonly
used two-phase interpolation function hi = η3

i (10− 15ηi +
6η2
i) along the two-phase interfaces [38], this constraint

on the concentrations reduces to (16), the constraint in
the two-phase KKS model, for i− j interfaces. The phase
concentrations are constrained such that the chemical po-
tentials of each phase are equal:

µ =
∂f1

∂c1
=
∂f2

∂c2
=
∂f3

∂c3
(26)

To enforce the constraint of (18), a term λ (1−
∑
i ηi)

is added to the free energy functional, where λ is a La-
grange multiplier. This results in the Lagrangian FL:

FL =

∫
Ω

[
floc + fgr + λ

(
1−

∑
i

ηi

)]
dV (27)

The time evolution of the order parameters is given by
the Allen–Cahn equation

∂ηi
∂t

= −LδFL
δηi

(28)

7

where using the variational derivative of the Lagrangian
enforces the constraint (18). Using the fact that ∂

∂t

∑
i ηi =

0 and assuming the mobilities for each phase are equal at
each position (though they may be dependent on the local
values of the order parameters), the Lagrange multiplier
can be eliminated and the Lagrangian can be written in
terms of the non-constrained variational derivatives as

δFL
δηi

∣∣∣∣∑
ηi=1

=
δF

δηi
− 1

3

∑
j

δF

δηj
(29)

Substituting for F ,

∂ηi
∂t

=− L
[

2

3

(
∂floc

∂ηi
−∇ · ∂fgr

∂∇ηi

)
− 1

3

(
∂floc

∂ηj
−∇ · ∂fgr

∂∇ηj

)
− 1

3

(
∂floc

∂ηk
−∇ · ∂fgr

∂∇ηk

)]
(30)

where

∂floc

∂ηi
=
∂hi
∂ηi

[fi(ci)− µci]

+
∂hj
∂ηi

[fj(cj)− µcj]

+
∂hk
∂ηi

[fk(ck)− µck]

+ 4Wηi (ηi − 1)

(
ηi −

1

2

)
(31)

and

∇ · ∂fgr

∂∇ηi
= κ∇2ηi (32)

The time evolution of the concentration field is given
by the Cahn–Hilliard equation:

∂c

∂t
= ∇ ·

[
Mc∇

δF

δc

]
(33)

where Mc is the Cahn–Hilliard mobility. Using the chain
rule, it can be shown following Kim et al. [40] that this is
equivalent to

∂c

∂t
= ∇ ·

[
D
∑
i

hi∇ci

]
(34)

where D is the solute diffusion coefficient. This demon-
strates that the evolution equation can be solved in terms
of the phase concentrations.

The three-phase KKS model was used to simulate a tri-
junction in a simple model system, as shown in Fig. 6. The
three phases have parabolic free energies, supplied using
the derivative Material system, with minima at c1 = 0.4,
c2 = 0.5, and c3 = 0.8. The free energy of phase 2
was made temperature-dependent, and a fixed tempera-
ture gradient was imposed to stabilize the tri-junction.

As seen in Fig. 6, at equilibrium a stable tri-junction is
formed. The boundaries between phases are indicated with
contour lines at η1 = 0.5 and η3 = 0.5. No third-phase for-
mation is observed at any two-phase interface. It was also
verified separately that the order parameter and compo-
sition profiles through a 1D η1 − η2 interface match the

analytical solutions, η1 = 1
2

[
1− tanh x−x0√

2δ

]
, η2 = 1 − η1,

η3 = 0, and c = h1(η1, η2, 0)c1 + h2(η1, η2, 0)c2 (where
x0 is the midpoint of the interface and δ =

√
κ
W), and

that the interfacial energy matched the analytical solu-

tion, γ =
√

2κW
3 . Thus, the three-phase KKS model im-

plemented in the MOOSE phase-field model allows simu-
lation of three-phase systems with arbitrary free energies
(specified as before with the derivative Material system),
prevents third-phase formation at a two-phase interface,
decouples interfacial energy from local (chemical) energies,
and allows the interfacial energy and thickness to be set
independently for optimal efficiency.

Figure 6: Tri-junction formed by a three-phase system at the
eutectic composition, with equilibrium compositions of each phase
c1 = 0.4, c2 = 0.5, and c3 = 0.8, simulated using the MOOSE three-
phase KKS model. The simulation cell is 40 nm × 40 nm. The bound-
aries between phases are indicated with contour lines at η1 = 0.5 and
η3 = 0.5.

6. Mechanics coupling

Heterogeneous material properties in multiphase sim-
ulations, such as lattice mismatches and variations in the
elasticity tensor, will introduce an interplay between chem-
ical and mechanical driving forces. Thus, it is critical to
couple the phase-field model equations to equations defin-
ing the mechanical behavior of the material. Mechanics
simulations are available in the MOOSE tensor mechanics

module, which can be easily coupled to the phase field

module. The local displacement vector ~u is determined by
solving the stress divergence equation

∇ · σ(ε− ε∗) +~b = 0, (35)

8

where σ is the stress and ~b is an applied body force. The
system is solved given suitable boundary conditions and
a constitutive law defining the relationship between stress
and the strain, ε. A stress free strain (or eigenstrain) ε∗

accounts for lattice mismatches, thermal expansion, etc.
The elastic energy of the system

Eel =
1

2
σ(ε− ε∗) · (ε− ε∗) (36)

is added to the total free energy to account for its impact
on the microstructure evolution.

In multiphase models, two approaches exist to model
the elastic free energy of the total system:

1. In the Voight-Taylor scheme [41] each phase has its
own mechanical properties, including the elastic con-
stants, constitutive model (and stress), and eigen-
strain, which can depend on composition variables.
Each phase free energy contains an elastic free en-
ergy contribution. The global elastic free energy is
computed analogously to the total chemical free en-
ergy, i.e.

Eel =
∑
j

h(ηj)E
j
el(Cj , ε

∗(~c)), (37)

and the total stress is calculated in a similar manner

σ =
∑
j

h(ηj)σj . (38)

2. In the Khachaturyan scheme [42, 43, 44] only global
interpolated mechanical properties, which can de-
pend on phase variables, are computed. In this model,
only a single stress is computed, and only a single
elastic free energy is built, which is added to the to-
tal chemical free energy.

In both cases, it is necessary for the mechanical prop-
erty materials to provide derivatives with respect to their
dependent variables. A solute concentration dependent
eigenstrain Material, for example, provides the ∂ε∗

∂c deriva-
tive. The Function Parser system currently only operates
with scalar quantities. Free energy contributions requiring
vector or tensor terms need to be implemented separately.
MOOSE provides a component that computes linear elas-
tic energy contributions to the free energy. To maintain a
modular free energy approach, we have created materials
that define the elastic contributions to the free energy and
its derivatives. In the first approach, this elastic contribu-
tion is computed for each phase individually, while in the
second approach only one elastic free energy computation
is performed in the system. Additional material classes
combine the energy contributions according to Eq. (37).
A utility Material is then used to add the chemical and
mechanical free energies into a total phase free energy. Me-
chanical material properties with a direct dependence on
the phase-field variables will automatically yield coupling
terms between the mechanics and phase-field equations.

The two approaches result in different elastic energy
densities in interfacial regions. This is demonstrated in

0 10 20 30 40 50 60
Radius r [nm]

0

1

2

3

4

5

6

7

E
la

st
ic

 e
n
er

g
y
 d

en
si

ty
 [

m
eV

/n
m

3
]

1. per-phase elastic
 energy

2. global mechanical
 properties

Figure 7: Radial elastic energy distribution of a set of six spheri-
cal particles with radii ranging from 10nm to 35nm embedded in a
uniform matrix with mismatching eigenstrain. The two approaches
of computing per-phase mechanical properties vs. global mechanical
properties lead to energetic differences in the interface region of the
particle.

Fig. 7, which shows the elastic energy density of six spher-
ical particles with varying radii as a function of distance
from the particle center. The particle phase has a 5%
eigenstrain. Each phase has a parabolic free energy with
an equilibrium solute concentration of 1 in the precipitate
phase and 0 in the matrix phase. The multiphase model
is assembled using (9), with W = 4, h(η) = 3η2 − 2η3,
and g(η) = η2(1 − η)2. A single order parameter is used
to model the two-phase system. The stiffness tensor is
symmetric and isotropic with the non-zero entries being 1
eV/nm3.

Note that the VTS per-phase elastic energy simulations
result in a pronounced elastic energy excess at the inter-
face. In both cases, the elastic strain state varies smoothly
across the interface. In the Khachaturyan scheme, the
effective eigenstrain also varies smoothly across the inter-
face. In the VTS scheme each phase has a fixed eigenstrain
value, and in the interface region the matrix is strongly
stressed for both phases. This effect, and its consequences
for simulating systems with strong elastic anisotropies, will
be explored in a future publication.

As a further demonstration of the mechanics coupling
capability, we consider an immiscible three-phase system
consisting of a matrix phase and two precipitate phases
with anisotropic eigenstrains simulated with the second
(global mechanical properties) approach. Both particles
have 5% lattice contraction along their minor axis direc-
tion. The elastic properties of precipitates and matrix
are set to a bulk modulus of 20 GPa and a shear mod-
ulus of 7 GPa. No-flux boundary conditions are applied
for the phase-field variables and the null space for the
displacement variables was eliminated by pinning select
nodes. Fig. 8 shows the simulation state after the pre-
cipitate growth has progressed. The mesh displacement
is plotted with an amplification factor of 5. The bottom
half of the plot shows the local strain energy density in

9

Figure 8: Three-phase precipitation problem with phase-
field/mechanics coupling and anisotropic eigenstrains. The simu-
lation cell is 40 nm × 40 nm. Displacements are exaggerated by a
factor of 5.

eV/nm3. The long range stress field in the minor axis di-
rection enforces the lenticular shape of the particles. Both
precipitate phases have a simple harmonic free energy with
a minimum at c = 0.9, while the matrix has its chemical
free energy minimum at c = 0. As an initial condition, two
spherical nuclei with c = 0.9 and a radius of 2 nm were in-
serted in a super saturated matrix with c = 0.5 to provide
solute for particle growth.

7. Conclusions

In this work, we have summarized a novel capability
for the rapid development of multiphase-field models us-
ing automatic symbolic differentiation in the open source
MOOSE framework. A modular free energy based ap-
proach allows researchers to focus on material model de-
velopment without the need to touch the underlying nu-
merical details of the coupled partial differential equation
system solves. Encapsulating free energies together with
their derivatives, which are needed by the phase field evo-
lution equations, allows them to be recombined like build-
ing blocks at runtime to set up simulation scenarios. Both
the automatic symbolic differentiation capability and the
free energy based approach to the solution of phase-field
models have been available in MOOSE for some time.

Symbolic differentiation enhances developer productiv-
ity in three important ways: it lowers the bar of entry re-
quired to investigate new/experimental phase-field mod-
els, it reduces the amount of time computational scien-
tists must spend developing code, allowing that time to
instead be spent on analysis, and it prevents an extremely
common class of errors, i.e. incorrect Jacobians, from neg-
atively impacting the efficiency and accuracy of results.
We have shown that the performance of the automatically
generated symbolic derivatives is at least on par with care-
fully handcrafted code when using the provided just-in-
time compilation capability.

Leveraging the modular free energy system, we have
implemented a set of multicomponent, multiphase mod-
els such as WBM and KKS that allow the user to combine
arbitrary single phase free energies into multiphase free en-
ergies. Tight coupling to linear elasticity is enabled though
free energy modules that provide the strain energy and its
derivatives to the modular free energy system. The various
free energy contributions are combined at runtime, allevi-
ating the need to modify and recompile code. Together,
these features offer increased flexibility when implement-
ing multiphase models and solution methods, and when
coupling to mechanics.

Acknowledgements

This work was funded by the Department of Energy
Nuclear Energy Advanced Modeling and Simulation pro-
gram and the Light Water Reactor Sustainability program.
This manuscript has been authored by Battelle Energy Al-
liance, LLC under Contract No. DE-AC07-05ID14517 with
the US Department of Energy. The publisher, by accepting
the article for publication, acknowledges that the United
States Government retains a nonexclusive, paid-up, irre-
vocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do
so, for United States Government purposes.

References

[1] L.-Q. Chen, Phase-field models for microstructure evolution,
Annual Review of Materials Research 32 (1) (2002) 113–140.
doi:10.1146/annurev.matsci.32.112001.132041.

[2] N. Moelans, B. Blanpain, P. Wollants, An introduction to
phase-field modeling of microstructure evolution, CALPHAD
32 (2) (2008) 268–294. doi:10.1016/j.calphad.2007.11.003.

[3] J. A. Warren, W. J. Boettinger, Prediction of dendritic growth
and microsegregation patterns in a binary alloy using the phase-
field method, Acta Metallurgica et Materialia 43 (2) (1995) 689–
703. doi:10.1016/0956-7151(94)00285-P.

[4] A. Karma, W.-J. Rappel, Phase-field method for computation-
ally efficient modeling of solidification with arbitrary interface
kinetics, Physical Review E 53 (4) (1996) R3017 (4 pages).
doi:10.1103/PhysRevE.53.R3017.

[5] A. A. Wheeler, W. J. Boettinger, G. B. McFadden, Phase-field
model for isothermal phase transitions in binary alloys, Physical
Review A 45 (10) (1992) 7424–7439. doi:10.1103/PhysRevA.

45.7424.
[6] S. G. Kim, W. T. Kim, T. Suzuki, Phase-field model for binary

alloys, Physical Review E 60 (6) (1999) 7186–7197. doi:10.

1103/PhysRevE.60.7186.
[7] D. Fan, L.-Q. Chen, Diffusion-controlled grain growth in two-

phase solids, Acta Materialia 45 (8) (1997) 3297–3310. doi:

10.1016/S1359-6454(97)00022-0.
[8] N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of

grain boundary properties in a generalized phase field model for
grain growth in anisotropic systems, Physical Review B 78 (2)
(2008) 024113 (23 pages). doi:10.1103/PhysRevB.78.024113.

[9] A. Wheeler, B. Murray, R. Schaefer, Computation of dendrites
using a phase field model, Physica D: Nonlinear Phenomena
66 (1) (1993) 243–262. doi:10.1016/0167-2789(93)90242-S.

[10] J. E. Guyer, D. Wheeler, J. A. Warren, FiPy: Partial differential
equations with Python, Computing in Science & Engineering
11 (3) (2009) 6–15. doi:10.1109/MCSE.2009.52.

10

http://dx.doi.org/10.1146/annurev.matsci.32.112001.132041
http://dx.doi.org/10.1016/j.calphad.2007.11.003
http://dx.doi.org/10.1016/0956-7151(94)00285-P
http://dx.doi.org/10.1103/PhysRevE.53.R3017
http://dx.doi.org/10.1103/PhysRevA.45.7424
http://dx.doi.org/10.1103/PhysRevA.45.7424
http://dx.doi.org/10.1103/PhysRevE.60.7186
http://dx.doi.org/10.1103/PhysRevE.60.7186
http://dx.doi.org/10.1016/S1359-6454(97)00022-0
http://dx.doi.org/10.1016/S1359-6454(97)00022-0
http://dx.doi.org/10.1103/PhysRevB.78.024113
http://dx.doi.org/10.1016/0167-2789(93)90242-S
http://dx.doi.org/10.1109/MCSE.2009.52

[11] T. Takaki, T. Fukuoka, Y. Tomita, Phase-field simulation dur-
ing directional solidification of a binary alloy using adaptive fi-
nite element method, Journal of Crystal Growth 283 (1) (2005)
263–278.

[12] M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An
object-oriented finite element framework for multiphysics phase
field simulations, Computational Materials Science 51 (1) (2012)
20–29. doi:10.1016/j.commatsci.2011.07.028.

[13] L.-Q. Chen, J. Shen, Applications of semi-implicit fourier-
spectral method to phase field equations, Computer Physics
Communications 108 (2) (1998) 147–158. doi:10.1016/

S0010-4655(97)00115-X.
[14] B. Puchala, G. Tarcea, E. A. Marquis, M. Hedstrom, H. V.

Jagadish, J. E. Allison, The Materials Commons: A collabora-
tion platform and information repository for the global mate-
rials community, JOM 68 (8) (2016) 2035–2044. doi:10.1007/

s11837-016-1998-7.
[15] A. Logg, K.-A. Mardal, G. Wells, Automated solution of dif-

ferential equations by the finite element method: The FEniCS
book, Vol. 84, Springer Science & Business Media, 2012.

[16] T. Keller, et al., The mesoscale microstructure simulation
project, https://github.com/mesoscale/mmsp (2017).

[17] S. M. Allen, J. W. Cahn, Ground state structures in ordered
binary alloys with second neighbor interactions, Acta Metal-
lurgica 20 (3) (1972) 423–433. doi:10.1016/0001-6160(72)

90037-5.
[18] J. W. Cahn, J. E. Hilliard, Free Energy of a Nonuniform Sys-

tem. I. Interfacial Free Energy, The Journal of Chemical Physics
28 (2) (1958) 258–267. doi:10.1063/1.1744102.

[19] D. R. Gaston, C. J. Permann, J. W. Peterson, A. E. Slaugh-
ter, D. Andrš, Y. Wang, M. P. Short, D. M. Perez, M. R.
Tonks, J. Ortensi, R. C. Martineau, Physics-based multiscale
coupling for full core nuclear reactor simulation, Annals of
Nuclear Energy, Special Issue on Multi-Physics Modelling of
LWR Static and Transient Behaviour 84 (2015) 45–54. doi:

10.1016/j.anucene.2014.09.060.
[20] P. N. Brown, A. C. Hindmarsh, Matrix-free methods for stiff

systems of ODEs, SIAM Journal on Numerical Analysis 23 (3)
(1986) 610–638. doi:10.1137/0723039.

[21] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov meth-
ods: A survey of approaches and applications, Journal of Com-
putational Physics 193 (2) (2004) 357–397. doi:10.1016/j.jcp.
2003.08.010.

[22] B. S. Kirk, J. W. Peterson, R. H. Stogner, G. F. Carey,
libMesh: A C++ Library for Parallel Adaptive Mesh Re-
finement/Coarsening Simulations, Engineering with Computers
22 (3–4) (2006) 237–254. doi:10.1007/s00366-006-0049-3.

[23] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual,
Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National Labo-
ratory (2016).
URL http://www.mcs.anl.gov/petsc

[24] L. Zhang, M. R. Tonks, D. Gaston, J. W. Peterson, D. Andrs,
P. C. Millett, B. S. Biner, A quantitative comparison between
and elements for solving the cahn-hilliard equation, Journal of
Computational Physics 236 (2013) 74–80. doi:10.1016/j.jcp.
2012.12.001.

[25] J. Nieminen, J. Yliluoma, Function Parser Web page (2011).
URL http://warp.povusers.org/FunctionParser

[26] J. E. Tolsma, P. I. Barton, On computational differentiation,
Computers & Chemical Engineering 22 (4–5) (1998) 475–490.
doi:10.1016/S0098-1354(97)00264-0.

[27] G. Kedem, Automatic differentiation of computer programs,
ACM Transactions on Mathematical Software (TOMS) 6 (2)
(1980) 150–165. doi:10.1145/355887.355890.

[28] The Open Group Base Specifications Issue 6 – dlopen (2004).
URL http://www.opengroup.org/susv3xsh/dlopen.html

[29] Q. H. Dang, Secure Hash Standard (SHS), Tech. Rep. FIPS-
180-4, Information Technology Laboratory, National Institute of

Standards and Technology, our implementation is from: http:

//www.tamale.net/sha1 (Mar. 2012). doi:10.6028/NIST.FIPS.
180-4.

[30] C. Lattner, V. Adve, LLVM: A compilation framework for life-
long program analysis & transformation, in: Proceedings of the
International Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization (CGO),
2004, pp. 75–87.
URL http://dl.acm.org/citation.cfm?id=977395.977673

[31] C. Lattner, et al., clang: A C language family frontend for
LLVM (2014).
URL http://clang.llvm.org/

[32] R. Stallman, et al., GCC, the GNU compiler collection (2014).
URL https://gcc.gnu.org/

[33] J. H. Hildebrand, The term ‘regular solution’, Nature 168 (1951)
868. doi:10.1038/168868a0.

[34] A. Jokisaari, K. Thornton, General method for incorporating
CALPHAD free energies of mixing into phase field models: Ap-
plication to the α-zirconium/δ-hydride system, CALPHAD 51
(2015) 334–343. doi:10.1016/j.calphad.2015.10.011.

[35] D. Schwen, E. Martinez, A. Caro, On the analytic calculation
of critical size for alpha prime precipitation in FeCr, Journal of
Nuclear Materials 439 (1-3) (2013) 180–184. doi:10.1016/j.

jnucmat.2013.03.057.
[36] Y. Li, S. Hu, R. Montgomery, F. Gao, X. Sun, Phase-field

simulations of intragranular fission gas bubble evolution in
UO2 under post-irradiation thermal annealing, Nuclear Instru-
ments and Methods in Physics Research Section B: Beam In-
teractions with Materials and Atoms 303 (2013) 62–67. doi:

10.1016/j.nimb.2012.11.028.
[37] M. Ohno, K. Matsuura, Quantitative phase-field modeling for

two-phase solidification process involving diffusion in the solid,
Acta Materialia 58 (17) (2010) 5749–5758. doi:10.1016/j.

actamat.2010.06.050.
[38] R. Folch, M. Plapp, Quantitative phase-field modeling of two-

phase growth, Physical Review E 72 (1) (2005) 011602 (27
pages). doi:10.1103/PhysRevE.72.011602.

[39] G. I. Tóth, T. Pusztai, L. Gránásy, Consistent multiphase-
field theory for interface driven multidomain dynamics, Physi-
cal Review B 92 (18) (2015) 184105 (19 pages). doi:10.1103/

PhysRevB.92.184105.
[40] S. G. Kim, W. T. Kim, T. Suzuki, M. Ode, Phase-field model-

ing of eutectic solidification, Journal of Crystal Growth 261 (1)
(2004) 135–158. doi:10.1016/j.jcrysgro.2003.08.078.

[41] K. Ammar, B. Appolaire, G. Cailletaud, S. Forest, Combining
phase field approach and homogenization methods for modelling
phase transformation in elastoplastic media, European Journal
of Computational Mechanics 18 (5-6) (2009) 485–523. doi:10.

3166/ejcm.18.485-523.
[42] A. G. Khachaturyan, Theory of Structural Transformations in

Solids, Wiley, New York, 1983.
[43] V. Vaithyanathan, C. Wolverton, L.-Q. Chen, Multiscale mod-

eling of precipitate microstructure evolution, Physical Re-
view Letters 88 (12) (2002) 125503 (4 pages). doi:10.1103/

PhysRevLett.88.125503.
[44] V. Vaithyanathan, C. Wolverton, L.-Q. Chen, Multiscale mod-

eling of θ′ precipitation in Al-Cu binary alloys, Acta Materialia
52 (10) (2004) 2973–2987. doi:10.1016/j.actamat.2004.03.

001.

11

http://dx.doi.org/10.1016/j.commatsci.2011.07.028
http://dx.doi.org/10.1016/S0010-4655(97)00115-X
http://dx.doi.org/10.1016/S0010-4655(97)00115-X
http://dx.doi.org/10.1007/s11837-016-1998-7
http://dx.doi.org/10.1007/s11837-016-1998-7
https://github.com/mesoscale/mmsp
http://dx.doi.org/10.1016/0001-6160(72)90037-5
http://dx.doi.org/10.1016/0001-6160(72)90037-5
http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1016/j.anucene.2014.09.060
http://dx.doi.org/10.1016/j.anucene.2014.09.060
http://dx.doi.org/10.1137/0723039
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1007/s00366-006-0049-3
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1016/j.jcp.2012.12.001
http://dx.doi.org/10.1016/j.jcp.2012.12.001
http://warp.povusers.org/FunctionParser
http://warp.povusers.org/FunctionParser
http://dx.doi.org/10.1016/S0098-1354(97)00264-0
http://dx.doi.org/10.1145/355887.355890
http://www.opengroup.org/susv3xsh/dlopen.html
http://www.opengroup.org/susv3xsh/dlopen.html
http://www.tamale.net/sha1
http://www.tamale.net/sha1
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://clang.llvm.org/
http://clang.llvm.org/
http://clang.llvm.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
http://dx.doi.org/10.1038/168868a0
http://dx.doi.org/10.1016/j.calphad.2015.10.011
http://dx.doi.org/10.1016/j.jnucmat.2013.03.057
http://dx.doi.org/10.1016/j.jnucmat.2013.03.057
http://dx.doi.org/10.1016/j.nimb.2012.11.028
http://dx.doi.org/10.1016/j.nimb.2012.11.028
http://dx.doi.org/10.1016/j.actamat.2010.06.050
http://dx.doi.org/10.1016/j.actamat.2010.06.050
http://dx.doi.org/10.1103/PhysRevE.72.011602
http://dx.doi.org/10.1103/PhysRevB.92.184105
http://dx.doi.org/10.1103/PhysRevB.92.184105
http://dx.doi.org/10.1016/j.jcrysgro.2003.08.078
http://dx.doi.org/10.3166/ejcm.18.485-523
http://dx.doi.org/10.3166/ejcm.18.485-523
http://dx.doi.org/10.1103/PhysRevLett.88.125503
http://dx.doi.org/10.1103/PhysRevLett.88.125503
http://dx.doi.org/10.1016/j.actamat.2004.03.001
http://dx.doi.org/10.1016/j.actamat.2004.03.001

	1225
	Introduction
	Phase-Field method summary
	Free energy based approach
	Automatic differentiation of free energies
	Smoothly-extrapolated logarithm

	Multiphase phase-field models
	KKS models

	Mechanics coupling
	Conclusions

